Linearity and Complements in Projective Space

نویسندگان

  • Michael Braun
  • Tuvi Etzion
  • Alexander Vardy
چکیده

The projective space of order n over the finite field Fq, denoted here as Pq(n), is the set of all subspaces of the vector space Fnq . The projective space can be endowed with distance function dS(X, Y ) = dim(X) + dim(Y ) − 2 dim(X ∩ Y ) which turns Pq(n) into a metric space. With this, an (n,M, d) code C in projective space is a subset of Pq(n) of size M such that the distance between any two codewords (subspaces) is at least d. Koetter and Kschischang recently showed that codes in projective space are precisely what is needed for error-correction in networks: an (n,M, d) code can correct t packet errors and ρ packet erasures introduced (adversarially) anywhere in the network as long as 2t + 2ρ < d. This motivates new interest in such codes. In this paper, we examine the two fundamental concepts of “complements” and “linear codes” in the context of Pq(n). These turn out to be considerably more involved than their classical counterparts. These concepts are examined from two different points of view, coding theory and lattice theory. Our discussion reveals some surprised phenomena of these concepts in Pq(n) and leaves some interesting problems for further research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE STRUCTURE OF FINITE PSEUDO- COMPLEMENTS OF QUADRILATERALS AND THEIR EMBEDDABILITY

A pseudo-complement of a quadrilateral D of order n, n, > 3, is a non-trivial (n+l)- regular linear space with n - 3n + 3 points and n + n - 3 lines. We prove that if n > 18 and D has at least one line of size n - 1, or if n > 25 , then the set of lines of D consists of three lines of size n -1, 6(n - 2) lines of size n - 2, and n - 5n + 6 lines of size n - 3. Furthermore, if n > 21 and D...

متن کامل

Affinization of Segre products of partial linear spaces

Hyperplanes and hyperplane complements in the Segre product of partial linear spaces are investigated. The parallelism of such a complement is characterized in terms of the point-line incidence. Assumptions, under which the automorphisms of the complement are the restrictions of the automorphisms of the ambient space, are given. An affine covering for the Segre product of Veblenian gamma spaces...

متن کامل

Pseudo Ricci symmetric real hypersurfaces of a complex projective space

Pseudo Ricci symmetric real hypersurfaces of a complex projective space are classified and it is proved that there are no pseudo Ricci symmetric real hypersurfaces of the complex projective space CPn for which the vector field ξ from the almost contact metric structure (φ, ξ, η, g) is a principal curvature vector field.

متن کامل

Affine Spaces within Projective Spaces

We endow the set of complements of a fixed subspace of a projective space with the structure of an affine space, and show that certain lines of such an affine space are affine reguli or cones over affine reguli. Moreover, we apply our concepts to the problem of describing dual spreads. We do not assume that the projective space is finitedimensional or pappian. Mathematics Subject Classification...

متن کامل

Projective Representations I. Projective lines over rings

We discuss representations of the projective line over a ring R with 1 in a projective space over some (not necessarily commutative) field K. Such a representation is based upon a (K,R)-bimodule U . The points of the projective line over R are represented by certain subspaces of the projective space P(K,U ×U) that are isomorphic to one of their complements. In particular, distant points go over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1103.3117  شماره 

صفحات  -

تاریخ انتشار 2011